DATASET

- Division I college basketball seasons from 2013-2019
 - From Kaggle & scraped from Bart Torvik
- Dataset has **24 variables**
- The dataset includes **2,455 observations**

College Basketball Dataset

Datasets for the 2013 through 2021 seasons

Data Card Code (29) Discussion (8)

About Dataset

Content

Data from the 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, and 2021 Division I college basketball seasons.

cbb.csv has seasons 2013-2019 combined

Usability ①

10.00

License

CC0: Public Domain

Expected update frequency

Never

RESEARCH QUESTION

"How does regular season adjusted offensive efficiency and regular season adjusted defensive efficiency predict postseason seed?"

DEFINITIONS

- **adjusted offensive efficiency** points *scored* per 100 possessions against the average D-I defense
- **adjusted defensive efficiency** points *given* up per 100 possessions against the average D-I defense
- **1-seed** the highest ranking an NCAA team can have

LITERATURE REVIEW

Overall: Some research on offensive/defensive ratings and tournament success, but effectively no research on relationship between these ratings and SEED

NCAA study, 2018 - over 9 seasons, a team's offensive rating was ~50% more important than its defensive rating in terms of NCAA tournament success

BleacherReport, 2013 - between 2003-2013, 35/40 Final Four contestants have been in the top 25 in defensive efficiency; 33/40 have been in the top 25 in offensive efficiency

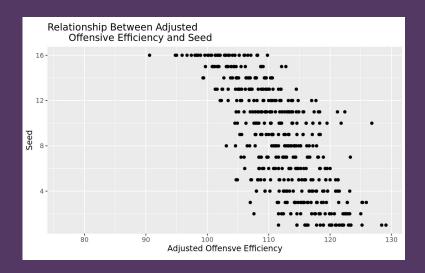
OUR HYPOTHESIS

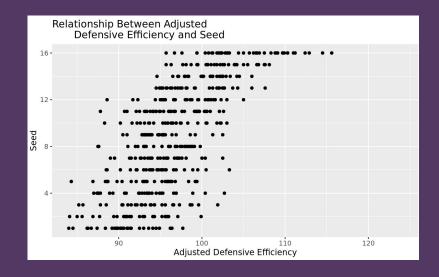
We predicted that, in regular season, teams with <u>higher</u> adjusted offensive efficiency & <u>lower</u> adjusted defensive efficiency will be predicted to have higher seeds.

OUR METHODS

VISUALIZE
Created ggplot scatterplots to visualize relationships between variables

MODEL
Created three linear regression models to predict seeds

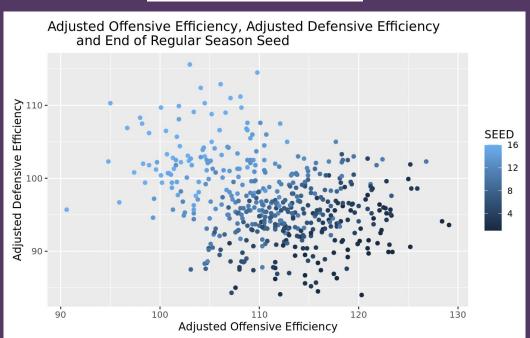

COMPARE
Adjusted r-squared to determine which model is best to determine correlation between variables


RESULTS

Model 1: ADJOE

Model 2: ADJDE

$$\widehat{SEED} = 69.90 - 0.55 * ADJOE$$


$$\widehat{SEED} = -49.52 + 0.60*ADJDE$$

RESULTS

Model 3: ADJOE * ADJDE

Things to note

- Not meant for extrapolated data
- Graph does not coincide with the linear regression
 (Seed is not on the Y)

RESULTS

Adjusted R-Squared

AIC (Akaike Information Criterion)

Model 1: ADJOE = 0.5544491

Model 1: ADJOE

= 2438.484

Model 2: ADJDE = 0.4853405

Model 2: ADJDE = 2507.12

Model 3: ADJOE * ADJDE = 0.8094014

Model 3: ADJOE * ADJDE

= 2036.28

CHALLENGES/ TAKEAWAYS

- Narrowing our research question
 - Choosing variables
- Visualizations and models staying on topic with research question
- Using an Adjusted R-Squared Model
 - Justification of our models

Limitations

- Considering factors of being 1-seed
- Definition of success
- The kinds of models we could use considering variable type

CONCLUSION

- ADJOE and ADJDE correlation to seed
- Importance of AIC and Adj. R Squared
- Trying to use different models
- Combining variables

Thank you!