Quarto & R Demo- Suggested Answers

Elijah Meyer

Packages for class

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0     ✔ purrr   0.3.5
✔ tibble  3.1.8     ✔ dplyr   1.0.9
✔ tidyr   1.2.1     ✔ stringr 1.4.1
✔ readr   2.1.3     ✔ forcats 0.5.2
Warning: package 'ggplot2' was built under R version 4.2.2
Warning: package 'tidyr' was built under R version 4.2.2
Warning: package 'readr' was built under R version 4.2.2
Warning: package 'purrr' was built under R version 4.2.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()

Quarto is great

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

mtcars

For the remainder of the class, we will use the mtcars data set.

  • Take a glimpse of the data set using the glimpse function in R
glimpse(mtcars)
Rows: 32
Columns: 11
$ mpg  <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,…
$ cyl  <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,…
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16…
$ hp   <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180…
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,…
$ wt   <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.…
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18…
$ vs   <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,…
$ am   <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,…
$ gear <dbl> 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,…
$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,…

You can run code in a few different ways. You can click the green arrow in the code chunk; use a keyboard short cut (Ctrl+Enter for PC; Cmd+Return for Mac). For a list of other keyboard shortcuts, please visit the following: https://support.posit.co/hc/en-us/articles/200711853-Keyboard-Shortcuts-in-the-RStudio-IDE

It’s a good habit to commit and push after you answer questions. Do this now!

  • Use ? before the data set name to get more information about the pre-loaded data in R. Type this in the console.

  • Now, filter out the any cars who weigh more than 4000 lbs in a single pipeline.

filter(mtcars, wt < 4)
                   mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360        14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D         24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230          22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280          19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C         17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SL        17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC       15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Fiat 128          32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic       30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla    33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona     21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger  15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin       15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28        13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird  19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9         27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2     26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa      30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L    15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino      19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora     15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E        21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
# We often use the pipe 
mtcars |>
  filter(wt < 4)
                   mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360        14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D         24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230          22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280          19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C         17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SL        17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC       15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Fiat 128          32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic       30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla    33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona     21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger  15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin       15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28        13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird  19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9         27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2     26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa      30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L    15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino      19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora     15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E        21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
  • Notice how the data were not overwritten by running mtcars in the console.

Now, filter out the any cars who weigh more than 4000 lbs and save the new data set named small_cars.

small_cars <- mtcars |>
  filter(wt < 4)
  • Using your new data set, take the mean weight of cars using the summarise function. Report the mean below. Hint, look up the help file to the function, and scroll down to the examples.
small_cars |> 
  summarise(mean = mean(wt))
      mean
1 2.959393

Render

When you click the Render button a document will be generated that includes both content and the output of embedded code. Note: if something is wrong with your code, your document will not render.

Optional

  • Visit the follow website: https://dplyr.tidyverse.org/reference/index.html

Choose a function of your choice and try to implement it on these data below

#insert code here